[1] World Health Organization. World Health Organisation, Coronavirus disease 2019 (COVID-19). Situation Report 46, WHO, Geneva, 2020. [2] Noorimotlagh Z.; Mirzaee S. A.; Jaafarzadeh N.; Maleki M.; Kalvandi G.; Karami C. A systematic review of emerging human coronavirus (SARS-CoV-2) outbreak: focus on disinfection methods. environmental survival, and control and prevention strategies. Environ. Sci. Pollut. Res. Int.2021, 28, 1-15. [3] Guo L.; Yao Z.; Yang L.; Zhang H.; Qi Y.; Gou L.; Xi W.Plasma-activated water: an alternative disinfectant for S protein inactivation to prevent SARS-CoV-2 infection. Chem. Eng. [J]. (Lausanne, Switzerland: 1996) 2021, 421, 127742-127742. [4] Martins R. B.; Castro I. A.; Pontelli M.; Souza, J. P., Lima, T. M.; Melo S. R.; Siqueira J. P. Z.; Caetano M. H.; Arruda E.; de Almeida, M. T. G. SARS-CoV-2 inactivation by ozonated water: a preliminary alternative for environmental disinfection. Ozone: Sci. Eng.2021, 43, 108-111. [5] Gu C. J.; Wu Y.; Guo H. M.; Zhu Y. F.; Xu W.; Wang Y. Y.; Zhou Y.; Sun Z. P.; Cai X.; Li Y. T.; Liu J.; Huang Z.; Yuan Z. H.; Zhang R.; Deng Q.; Qu D.; Xie Y. H. Protoporphyrin IX and verteporfin potently inhibit SARS-CoV-2 infection in vitro and in a mouse model expressing human ACE2. Sci. Bull.2021, 66, 925-936. [6] Bisag A.; Pasquale I.; Romolo, L., Cristiana B.; Filippo C.; Giorgio D.; Matteo G. Cold atmospheric plasma inactivation of aerosolized microdroplets containing bacteria and purified SARS-CoV-2 RNA to contrast airborne indoor transmission. Plasma Process. Polym.2020, 17, e2000154. [7] Inagaki H.; Akatsuki, S., Hironobu, S., Tamaki, O.; Shouichi, F. Rapid inactivation of SARS-CoV-2 with deep-UV LED irradiation. Emerg. Microbes Infec.2021, 9, 1744-1747. [8] Kampf G.; Todt D.; Pfaender S.; Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect.2020, 104, 246. [9] Seifer S.; Michael, E. Thermal Inactivation Scaling Applied for SARS-CoV-2. Biophys. J.2021, 120, 1054-1059. [10] Minoshima M.; Yue, L., Takuto, K., Ryuichi, N.; Hitoshi I.; Yoshinobu K.; Kazuhito H.; Kayano, S. Comparison of the antiviral effect of solid-state copper and silver compounds. J. Hazard. Mater.2016, 312, 1-7. [11] Cortes A. A.; Zuñiga, J. M. The use of copper to help prevent transmission of SARS-coronavirus and influenza viruses. A general review. Diagn. Micr. Infec. Dis.2020, 98, 115176. [12] Nakamura, S., Yoko S.; Naoko A.; Masayuki I.; Masahiro S.; Tomohiro T.; Masanori F. Synthesis and application of silver nanoparticles (Ag NPs) for the prevention of infection in healthcare workers. Int. J. Mol. Sci.2019 20, 3620. [13] Jeremiah; Sundararaj S.; Kei M.; Takeshi M.; Yutaro Y.; Akihide, R. Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochem. Biophys. Res. Commun.2020, 533, 195. [14] Atiyeh B. S.; Bishara S.; Michel C.; Shady N Hayek; Saad, A. D. Effect of silver on burn wound infection control and healing: review of the literature. Burns2007, 33, 139-148. [15] Zhao G. J.; Edward, S. Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals1998, 11, 27-32. [16] Lara H. H.; Humberto H.; Elsa, N. G., Liliana, I.T.; Dinesh K. S.Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J. Nanobiotechnol. 2011, 9, 30. [17] Liu X. J.; Zhang Y.; Yan X.; Han, R. C. Prevention of Chinese sacbrood virus infection in Apis cerana using RNA interference. Curr. Microbiol.2010, 61, 422-428. [18] Lu L.; Sun R. W.-Y.; Chen R.; Hui C.-K.; Ho C.-M.; Luk J. M.; Lau G. K. K.; Che, C.-M. Silver nanoparticles inhibit hepatitis B virus replication. Antivir. Ther.2008, 13, 253-262. |