Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact Us
Early Edition  //  Current Issue  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Medicine Research    2020, Vol. 4 Issue (3) : 200012     DOI: 10.21127/yaoyimr20200012
Minireviews |
Progress in Phytochemical and Bioactivities of Coffea arabica L.
Xiao-Jing Shen,a Zhu-Bin Zhou,b Fan-Qiu Nie,b Cheng-Ting Zi,*,b and Jiang-Ping Fan*,a
a College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
b College of Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
Download: PDF(1601 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Coffea arabica L. is a famous specie in genus caffee for medicinal treatment and diet with wide distribution and rich resources. It contains rich alkaloids, flavonoids and terpenes, which exhibited antioxidation, anti-inflammatory, antitumor, antidiabetic, live protection, and neuroprotective activities. Herein, we summarized the progress in the chemical constituents and bioactivities of C. arabica L. to provide ideas for medicinal development prospects of C. arabica L.
Keywords Coffea arabica L.      chemical constituents      bioactivities      progress     
Corresponding Authors: *,Email: (C. Z.), (J. F.)   
Online First Date: 23 July 2020    Issue Date: 22 September 2020
E-mail this article
E-mail Alert
Articles by authors
Xiao-Jing Shen
Zhu-Bin Zhou
Fan-Qiu Nie
Cheng-Ting Zi
and Jiang-Ping Fan
Cite this article:   
Xiao-Jing Shen,Zhu-Bin Zhou,Fan-Qiu Nie, et al. Progress in Phytochemical and Bioactivities of Coffea arabica L.[J]. Medicine Research, 2020, 4(3): 200012.
[1] Wintgens, J. N. The Coffee Plant. In Coffee: Crowing, Processing, Sustuinuchle Production, Weinheim, 2004, pp. 1-14.
[2] Davis, A. P.; Tosh, J.; Ruch, N.; Fay, M. F. Growing coffee: Psilanthus (Rubiaceae) subsumed on the basis of molecular and morphological data; implications for the size, morphology, distribution and evolutionary history of coffea. Bot. J. Linn. Soc. 2011, 167, 357-377.
[3] Petermann, J. B.; Baumann, T. W. Metabolic Relations between Methylxanthines and Methyluric Acids in Coffea L. Plant Physiol. 1983, 73, 961-964.
[4] Qiu, M. H.; Zhang, Z. R.; Li, Z. R.; Zhou, L.; Chu, R.; Liu, J. Q.; Wang, W. H. Review of research on the chemical constituents and bioactivities of coffee. Plant Dcience J. 2014, 32, 540-550.
[5] Ratanamarno, S.; Surbkar, S. Caffeine and catechins in fresh coffee leaf (Coffea arabica) and coffee leaf tea. Maejo Int. J. Sci. Technol. 2017, 11, 211-218.
[6] Chen, X. M. A review on coffee leaves: phytochemicals, bioactivities and applications. Crit. Rev. Food Sci. Nutr. 2019, 59, 1008-1025.
[7] Júnior, A. P. D.; Shimizu, M. M.; Moura, J. C. M. S.; Catharino, R. R.; Ramos, R. V. R.; Ribeiro, R. V.; Mazzafera, P. Looking for the physiological role of anthocyanins in the leaves of coffea arabica. Photochem. Photobiol. 2012, 88, 928-937.
[8] Patay, E. B.; Bencsik, T.; Papp, N. Phytochemical overview and medicinal importance of coffea species from the past until now. Asian Pac. J. Trop. Med. 2016, 9, 1127-1135.
[9] Zhang, Y. H.; Fu, X. P.; Liang, W. J.; Han, Z. H.; Liu, S. Y.; Yuan, W.; Fan, J. P. Antioxidant activity and composition of anthocyanins of crude extracts from Yunnan arabica coffee husk. Food Sci. Technol. 2016, 41, 219-223.
[10] Wang, X.; Peng, X. R.; Lu, J.; Hu, G. L.; Qiu, M. H. New Dammarane Triterpenoids, Caffruones A-D, from the Cherries of Coffea arabica. Nat. Prod. Bioprospect. 2018, 8, 413-418.
[11] Wang, X.; Peng, X. R.; Lu, J.; Hu, G. L.; Qiu, M. H. Ent-kaurane diterpenoids from the cherries of Coffea arabica. Fitoterapia 2019, 132, 7-11.
[12] Wang, X.; Meng, Q. Q.; Peng, X. R.; Hu, G. L.; Qiu, M. H. Identification of new diterpene esters from green Arabica coffee beans, and their platelet aggregation accelerating activities. Food Chem. 2018, 263, 251-257.
[13] Shu, Y.; Liu, J. Q.; Peng, X. R.; Wan, L. S.; Zhou, L.; Zhang, T. Characterization of Diterpenoid Glucosides in Roasted Puer Coffee Beans. J. Agr. Food Chem. 2014, 62, 2631-2637.
[14] Chu, R.; Wan, L. S.; Peng, X. R.; Yu, M. Y.; Zhang, Z. R.; Zhou, L.; Li, Z. R.; Qiu, M. H. Characterization of New Ent-kaurane Diterpenoids of Yunnan Arabica Coffee Beans. Nat. Prod. Bioprospect. 2014, 6, 217-223.
[15] Asamenew, G.; Kim, H. W.; Lee, M. K.; Lee, S. H.; Lee, S. J.; Cha, Y. S.; Lee, S. H.; Yoo, S. M.; Kim, J. B. Comprehensive characterization of hydroxycinnamoyl derivatives in green and roasted coffee beans: A new group of methyl hydroxycinnamoyl quinate. Food Chem. 2019, X2, 100033.
[16] Hafsah, H.; Iriawati, I.; Syamsudin, T. S. Dataset of volatile compounds from flowers and secondary metabolites from the skin pulp, green beans, and peaberry green beans of robusta coffee. Data in Brief 2020, 29, 105219.
[17] Acidri, R.; Sawai, Y.; Sugimoto, Y.; Handa, T.; Sasagawa, D.; Masunaga, T.; Yamamoto, S.; Nishihara, E. Phytochemical Profile and Antioxidant Capacity of Coffee Plant Organs Compared to Green and Roasted Coffee Beans. Antioxidants 2020, 9, 1-18.
[18] Ngamsuk, S.; Huang, T. C.; Hsu, J. L. Determination of Phenolic Compounds, Procyanidins, and Antioxidant Activity in Processed Co?ea arabica L. Leaves. Foods 2019, 8, 1-13.
[19] Perolizzi, S.; D’Angelo, V.; Aragona, M.; Dugo, P.; Cacciola, F.; Capillo, G.; Dugo, G.; Lauriano, E. R. Nat. Prod. Res. 2018, 3, 1-7.
[20] El-Garawani, I. M.; El-Nabi, S. H.; El-Shafey, S.; Elfiky, M.; Nafie, E. Coffea arabica Bean Extracts and Vitamin C: A Novel Combination Unleashes MCF-7 Cell Death. Curr. Pharm. Biotechnol. 2020, 21, 23-36.
[21] Martina, S. J.; Govindan, P. A.; Wahyuni, A. S. The Difference in Effect of Arabica Coffee Gayo Beans and Leaf (Coffea Arabica Gayo) Extract on Decreasing Blood Sugar Levels in Healthy Mice. Open Access Macedonian J. Med. Sci. 2019, 7, 3363-3365.
[22] Mellbye, F. B.; Jeppesen, P. B.; Shohouh, P.; Lausten, C.; Hermansen, K.; Gregersen, S. Cafestol, a bioactive substance in coffee, has antidiabetic in KKAy mice. J. Nat. Prod. 2017, 80, 2353-2359.
[23] Liu, L.; Du, X.; Zhang, Z.; Zhou, J. Y. Trigonelline inhibits caspase 3 to protect β cells apoptosis in streptozotocin-induced type 1 diabetic mice. Eur. J. Pharmacol. 2018, 836, 115-121.
[24] Shao, X. N.; Chen, C.; Miao, C. S.; Yu, X. Y.; Li, X. J.; Geng, J. N.; Fan, D. Y.; Lin, X. Y.; Chen, Z.; Shi, Y. Expression analysis of microRNAs and their target genes during experimental diabetic renal lesions in rats administered with ginsenoside Rb1 and trigonelline. Pharmazie 2019, 74, 492-498.
[25] Wiltberger, G.; Wu, Y.; Lange, U.; Hau, H. M.; Tapper, E.; Krenzien, F.; Atanasov, G.; Benzing, C.; Feldbrügge, L.; Csizmadia, E.; Broschewitz, J.; Bartels, M.; Seehofer, D.; Jonas, S.; Berg, T.; Hessel, P.; Ascherl, R.; Neumann, U. P.; Pratschke, J.; Robson, S. C.; Schmelzle, M. Protective effects of coffee consumption following liver transplantation for hepatocellular carcinoma in cirrhosis. Aliment. Pharm. Ther. 2019, 49, 779-788.
[26] Vitaglione, P.; Mazzone, G.; Lembo, V.; D'Argenio, G.; Rossi, A.; Guido, M.; Savoia, M.; Salomone, F.; Mennella, I.; Filippis, F. D.; Ercolini, D.; Caporaso, N.; Morisco, F. Coffee prevents fatty liver disease induced by a high-fat diet by modulating pathways of the gut-liver axis. J. Nutr. Sci. 2019, 8, 1-11.
[27] Ishida, K.; Yamamoto, M.; Misawa, K.; Nishimura, H.; Misawa, K.; Ota, N.; Shimotoyodome, A. Coffee polyphenols prevent cognitive dysfunction and suppress amyloid β plaques in APP/PS2 transgenic mouse. Neurosci. Res. 2019, 154, 35-44.
[28] Zeitlin, R.; Patel, S.; Burgess, S.; Arendash, G. W.; Echeverria, V. Caffeine induces beneficial changes in PKA signaling and JNK and ERK activities in the striatum and cortex of Alzheimer’s transgenic mice. Brain Res. 2011, 1417, 127-136.
[29] Chen, X.; Lan, X.; Roche, I.; Liu, R.; Geiger, J. D. Caffeine protects against MPTP-induced blood-brain barrier dysfunction in mouse striatum. J. Neurochem. 2008, 107, 1147-1157.
[30] Sun, L.; Tian, X.; Gou, L.; Ling, X.; Wang, L.; Feng, Y.; Xing Y, X.; Liu, Y. Beneficial synergistic effects of concurrent treatment with theanine and caffeine against cerebral ischemia reperfusion injury in rats. Can. J. Physiol. Pharm. 2013, 91, 562-569.
[31] Omidiardali, H.; Lorigooini, Z.; Soltani, A.; Balali-Dehkordi. S.; Amini-Khoei, H. Inflammatory responses bridge comorbid cardiac disorder in experimental model of IBD induced by DSS: protective effect of the trigonelline. Inflammopharmacology 2019, 27, 1265-1273.
[32] Fahanik, B. J.; Baluchejadmojarad, T.; Nikbakht, F.; Roghani, M. Trigonelline protects hippocampus against intracerebral Aβ (1-40) as a model of Alzheimer's disease in the rat: insights into underlying mechanisms. Metab. Brain Dis. 2019, 34, 191-201.
[1] Kuo Xu, Qian Liu, Lin Ni, Yong-Mei Du and Zhong-Feng Zhang. An Update on Chemical Constituents from Nicotiana tabacum L. and Their Bioactivities from 2017 to 2020[J]. Medicine Research, 2020, 4(4): 200019.
[2] Xiao-Jing Shen, Ting-Ting Zheng, Hong Wang, Jiao Cai, Cheng-Ting Zi, and Jiang-Ping Fan. Progress in Antitumor Activity of Diterpenoid Alkaloids[J]. Medicine Research, 2020, 4(4): 200015.
[3] Shuyu Xu, Yin Qu, Xinyu Liu, Yao Li, Jimin Liu, Hezhong Jiang. Progress in Chemical Constituents and Pharmacological Effects of Citrus medica L. var. sarcodactylis Swingle[J]. Medicine Research, 2020, 4(1-2): 190014.
[4] Yingying Fu, Junyan Chu, and Jifeng Liu. Diterpenoids from the genus Illicium and Their Bioactivities[J]. Medicine Research, 2020, 4(1-2): 200005.
[5] Junwen Wang, Xueyan Li, Chaoyan Zhang. Recent Advances on Bioactivity of Seaweed Polysaccharides[J]. Medicine Research, 2019, 3(4): 200003.
[6] Xinyu Lei, Qinru Zhou, Wenju Li, Guifang Qin, Xiangchun Shen, Nenling Zhang. Stilbenoids from Leguminosae and their Bioactivities[J]. Medicine Research, 2019, 3(4): 200004.
[7] Fang Li, Tingyu Wen, Jifeng Liu. Progress in Chemical Constituents and Bioactivities of Broussonetia pa-pyrifera (L.) Vent[J]. Medicine Research, 2019, 3(2): 190005.
[8] Qinru Zhou, Na Mao, Yan Chen, Shiquan Gan, Linjing Wu, Xiangchun Shen, Nenling Zhang. Triterpenes from the genus Ficus and Their Bioactivities[J]. Medicine Research, 2019, 3(1): 190004.
[9] Wenjing Zhou, Zhai Shiyang, Ruihua Guo. Phytochemical Compositions and Bioactivities of Juglans regia Shell and Green Husks[J]. Medicine Research, 2018, 2(2): 180007.
[10] Nenling Zhang, Linjing Wu, Xiang Liu, Xiangchun Shen. Plant-Derived Kavalactones and Their Bioactivities[J]. Medicine Research, 2018, 2(1): 170019.
[11] Jiaoyang Li, Yuxin Wang, Ruihua Guo, Bin Bao, Wenhui Wu. Progress in Bioactivities of Phlorotannins from Sargassumi[J]. Medicine Research, 2018, 2(1): 180001.
[12] Jianchen Liu, Chunyan Du, Yanan Li, Shiman Zuo, Rui Tan, Hezhong Jiang. Progress in Chemical Constituents and Pharmacological Effects of Lindera glauca[J]. Medicine Research, 2018, 2(1): 180003.
[13] Jiang Shengnan,Guo Ruihua,Dong Duan,Bao Bin,Yu Xiaowei,Wu Wenhui. Structural Characterization and Bioactivities of Red Pigment from Marine Rhodotorula glutinis[J]. Medicine Research, 2017, 1(1): 6.
[14] Qian Shiyun, Guo Ruihua, Dong Duan, Bao Bin, Wang Shujun, Wu Wenhui. Biosynthetic Pathways and Bioactivities of Bisindole Compounds:a Short Review[J]. Medicine Research, 2017, 1(1): 20.
Full text



Copyright © Medicine Research, All Rights Reserved.
Address: 425 East 76th Street, Apt 9E, New York, NY, 10021, United States