|
||||||||||
|
|
• Review • Previous Articles
Er-Qiang Zhao,a Wen-Xiu Lu,b En-Da Sun,a Zong-Min Mou,a and Da-Ke Zhao*,a
Received:
2024-05-03
Accepted:
2024-05-15
Contact:
*Email: zhaodk2012@ynu.edu.cn (D. Z.)
Er-Qiang Zhao, Wen-Xiu Lu, En-Da Sun, Zong-Min Mou and Da-Ke Zhao. Melatonin Potentially Acts as a Widely-Acting Protective Tool in COVID-19[J]. Medicine Research, DOI: 10.21127/yaoyimr20240006.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.medicineresearch.org/EN/10.21127/yaoyimr20240006
[1] Zhang, R.; Wang, X.; Ni, L.; Di, X.; Ma, B.; Niu, S.; Liu, C.; Reiter, R. J. COVID-19: Melatonin as a potential adjuvant treatment. Life Sci. 2020, 250, 117583. [2] Bowe, B.; Xie, Y.; Al-Aly, Z. Postacute sequelae of COVID-19 at 2 years. Nat. Med. 2023, 29, 2347–2357. [3] Gorbalenya, A. E.; Baker, S. C.; Baric, R. S.; de Groot, R. J.; Drosten, C.; Gulyaeva, A. A.; Haagmans, B. L.; Lauber, C.; Leontovich, A. M.; Neuman, B. W.; Penzar, D.; Perlman, S.; Poon, L. L. M.; Samborskiy, D. V.; Sidorov, I. A.; Sola, I.; Ziebuhr, J. Coronaviridae Study Group of the International Committee on Taxonomy of, V., The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [4] Ahmed, S. S. The coronavirus disease 2019, (covid-19): a review. J. Adv. Med. Med. Res. 2020, 32, 1–9. [5] Wu, Z.; McGoogan, J. M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) outbreak in china: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA-J. Am. Med. Assoc. 2020, 323, 1239–1242. [6] Berkhout, B.; Herrera-Carrillo, E. SARS-CoV-2 Evolution: on the sudden appearance of the omicron variant. J. Virol. 2022, 96, e00090–00022. [7] Zhang, J. J.; Dong, X.; Liu, G. H.; Gao, Y. D. Risk and protective factors for COVID-19 morbidity, severity, and mortality. Clin. Rev. Allergy Immunol. 2023, 64, 90–107. [8] Shrestha, L. B.; Foster, C.; Rawlinson, W.; Tedla, N.; Bull, R. A. Evolution of the SARS-CoV-2 omicron variants BA.1 to BA.5: Implications for immune escape and transmission. Rev. Med. Virol. 2022, 32, e2381. [9] Tan, D. X.; Reiter, R. J. Melatonin reduces the mortality of severely-infected COVID-19 patients. Melatonin Res. 2021, 4, 613–616. [10] Reiter, R. J.; Sharma, R.; Simko, F.; Dominguez-Rodriguez, A.; Tesarik, J.; Neel, R. L.; Slominski, A. T.; Kleszczynski, K.; Martin-Gimenez, V. M.; Manucha, W.; Cardinali, D. P. Melatonin: highlighting its use as a potential treatment for SARS-CoV-2 infection. Cell. Mol. Life Sci. 2022, 79, 143. [11] Xu, E.; Xie, Y.; Al-Aly, Z. Long-term gastrointestinal outcomes of COVID-19. Nat. Commun. 2023, 14, 983. [12] Reiter, R. J.; Abreu-Gonzalez, P.; Marik, P. E.; Dominguez- Rodriguez, A. Therapeutic algorithm for use of melatonin in patients with COVID-19. Front. Med. 2020, 7, 226. [13] Tordjman, S.; Chokron, S.; Delorme, R.; Charrier, A.; Bellissant, E.; Jaafari, N.; Fougerou, C. Melatonin: pharmacology, functions and therapeutic benefits. Curr. Neuropharmacol. 2017, 15, 434–443. [14] Vlachou, M.; Siamidi, A.; Dedeloudi, A.; Konstantinidou, S. K.; Papanastasiou, I. P. Pineal hormone melatonin as an adjuvant treatment for COVID-19 (Review). Int. J. Mol. Med. 2021, 47, 47. [15] Acuña-Castroviejo, D.; Escames, G.; Venegas, C.; Díaz-Casado, M. E.; Lima-Cabello, E.; López, L. C.; Rosales-Corral, S.; Tan, D. X.; Reiter, R. J. Extrapineal melatonin: sources, regulation, and potential functions. Cell. Mol. Life Sci. 2014, 71, 2997–3025. [16] James, J. D.; Mark, M.; Jorge, B. A. Melatonin may decrease risk for and aid treatment of COVID-19 and other RNA viral infections. Open Heart 2021, 8, e001568. [17] Juybari, K. B.; Pourhanifeh, M. H.; Hosseinzadeh, A.; Hemati, K.; Mehrzadi, S. Melatonin potentials against viral infections including COVID-19: Current evidence and new findings. Virus Res . 2020, 287, 198108. [18] Daryani, A.; Montazeri, M.; Pagheh, A. S.; Sharif, M.; Sarvi, S.; Hosseinzadeh, A.; Reiter, R. J.; Hadighi, R.; Joghataei, M. T.; Ghaznavi, H.; Mehrzadi, S. The potential use of melatonin to treat protozoan parasitic infections: A review. Biomed. Pharmacother. 2018, 97, 948–957. [19] Kleszczyński, K.; Slominski, A. T.; Steinbrink, K.; Reiter, R. J. Clinical trials for use of melatonin to fight against COVID-19 are urgently needed. Nutrients 2020, 12, 2561. [20] Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 2020, 395, 497–506. [21] Cardinali, D. P.; Brown, G. M. Pandi-Perumal, S. R., Can melatonin be a potential “Silver Bullet” in treating COVID-19 patients? Diseases 2020, 8, 44. [22] Jacob, S.; Poeggeler, B.; Weishaupt, J. H.; Sirén, A. L.; Hardeland, R.; Bähr, M.; Ehrenreich, H. Melatonin as a candidate compound for neuroprotection in amyotrophic lateral sclerosis (ALS): high tolerability of daily oral melatonin administration in ALS patients. J. Pineal Res. 2002, 33, 186–187. [23] Silman, R. E. Melatonin: a contraceptive for the nineties. Eur. J. Obstet. Gyn. Reprod. Biol. 1993, 49, 3–9. [24] Martín Giménez, V. M.; Prado, N.; Diez, E.; Manucha, W.; Reiter, R. J. New proposal involving nanoformulated melatonin targeted to the mitochondria as a potential COVID-19 treatment. Nanomedicine 2020, 15, 2819–2821. [25] Brown, G. M.; Karthikeyan, R.; Pandi-Perumal, S. R.; Cardinali, D. P. Autism spectrum disorder patients may be susceptible to COVID-19 disease due to deficiency in melatonin. Med. Hypotheses 2021, 149, 110544. [26] Shneider, A.; Kudriavtsev, A.; Vakhrusheva, A. Can melatonin reduce the severity of COVID-19 pandemic? Int. Rev. Immunol. 2020, 39, 153–162. [27] Maestroni, G. Exogenous melatonin as potential adjuvant in anti-SarsCov2 vaccines. J. Neuroimmune Pharmacol. 2020, 15, 572–573. [28] Ramos, A.; Míguez, M. P.; Morgado, S.; Sanchez-Correa, B.; Gordillo, J. J.; Casado, J. G.; Tarazona, R.; Regodón, S. Melatonin enhances responsiveness to Dichelobacter nodosus vaccine in sheep and increases peripheral blood CD4+ T lymphocytes and IgG-expressing B lymphocytes. Vet. Immunol. Immunopathol. 2018, 206, 1–8. [29] Ahmad, S. J.; Feigen, C. M.; Vazquez, J. P.; Kobets, A. J.; Altschul, D. J. Neurological sequelae of COVID-19. J. Integr. Neurosci. 2022, 21, 77. [30] Jarrott, B.; Head, R.; Pringle, K. G.; Lumbers, E. R.; Martin, J. H. “LONG COVID”—A hypothesis for understanding the biological basis and pharmacological treatment strategy. Pharmacol. Res. Perspect. 2022, 10, e00911. [31] Cardinali, D. P.; Srinivasan, V.; Brzezinski, A.; Brown, G. M. Melatonin and its analogs in insomnia and depression. J. Pineal Res. 2012, 52, 365–375. [32] Yeong-Min, Y.; Su Kil, J.; Gwang-Hoon, K.; Jung-Youl, P.; Seong-Soo, J. Pharmacological advantages of melatonin in immunosenescence by improving activity of T lymphocytes. J. Biomed. Res. 2015, 30, 314–321. [33] Muniyappa, R.; Gubbi, S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am. J. Physiol.-Endocrinol. Metab. 2020, 318, E736–E741. [34] Shi, H.; Wang, W.; Yin, J.; Ouyang, Y.; Pang, L.; Feng, Y.; Qiao, L.; Guo, X.; Shi, H.; Jin, R.; Chen, D. The inhibition of IL-2/IL-2R gives rise to CD8+ T cell and lymphocyte decrease through JAK1-STAT5 in critical patients with COVID-19 pneumonia. Cell Death Dis. 2020, 11, 429. [35] Grifoni, A.; Weiskopf, D.; Ramirez, S. I.; Mateus, J.; Dan, J. M.; Moderbacher, C. R.; Rawlings, S. A.; Sutherland, A.; Premkumar, L.; Jadi, R. S.; Marrama, D.; de Silva, A. M.; Frazier, A.; Carlin, A. F.; Greenbaum, J. A.; Peters, B.; Krammer, F.; Smith, D. M.; Crotty, S.; Sette, A. Targets of T cell responses to SARS-CoV-2 coronavirus in hHumans with COVID-19 disease and unexposed individuals. Cell 2020, 181, 1489–1501. [36] Chowdhury, M. A.; Hossain, N.; Kashem, M. A.; Shahid, M. A.; Alam, A. Immune response in COVID-19: A review. J. Infect. Public Heal. 2020, 13, 1619–1629. [37] Carrillo-Vico, A.; Lardone, P. J.; Álvarez-Sánchez, N.; Rodríguez-Rodríguez, A.; Guerrero, J. M. Melatonin: buffering the immune system. Int. J. Mol. Sci. 2013, 14, 8638–8683. [38] Rahimi, B. S.; Mohebbi, A.; Vakilzadeh, G.; Biglari, P.; Razeghi Jahromi, S.; Mohebi, S. R.; Shirian, S.; Gorji, A.; Ghaemi, A. Enhancement of therapeutic DNA vaccine potency by melatonin through inhibiting VEGF expression and induction of antitumor immunity mediated by CD8+ T cells. Arch. Virol. 2018, 163, 587–597. [39] Regodón, S.; Martín-Palomino, P.; Fernández-Montesinos, R.; Herrera, J. L.; Carrascosa-Salmoral, M. P.; Píriz, S.; Vadillo, S.; Guerrero, J. M.; Pozo, D. The use of melatonin as a vaccine agent. Vaccine 2005, 23, 5321–5327. [40] Ramos, A.; Míguez, M.; Morgado, S.; Sanchez-Correa, B.; Gordillo, J. J.; Casado, J. G.; Tarazona, R.; Regodón, S. Melatonin Enhances Responsiveness to Dichelobacter Nodosus Vaccine in Sheep and Increases Peripheral Blood CD4 T Lymphocytes and IgG-Expressing B Lymphocytes. Vet. Immunol. Immunopathol. 2018, 206, 1–8. [41] Srinivasan, V.; Maestroni, G. J. M.; Cardinali, D. P.; Esquifino, A. I.; Perumal, S. R. P.; Miller, S. C. Melatonin, immune function and aging. Immun. Ageing 2005, 2, 17. [42] Wichniak, A.; Kania, A.; Siemiński, M.; Cubała, W. J. Melatonin as a potential adjuvant treatment for covid-19 beyond sleep disorders. Int. J. Mol. Sci. 2021, 22, 8623. [43] Xue, Z.; Lin, L.; Zhang, S.; Gong, J.; Liu, J.; Lu, J. Sleep problems and medical isolation during the SARS-CoV-2 outbreak. Sleep Med. 2020, 70, 112–115. [44] Beck, F.; Léger, D.; Fressard, L.; Peretti-Watel, P.; Verger, P. The Coconel, G. Covid-19 health crisis and lockdown associated with high level of sleep complaints and hypnotic uptake at the population level. J. Sleep Res. 2021, 30, e13119. [45] Morin, C. M.; Carrier, J.; Bastien, C.; Godbout, R. On behalf of the Canadian, S., Circadian, N. Sleep and circadian rhythm in response to the COVID-19 pandemic. Can. J. Pub. Health 2020, 111, 654–657. [46] Tan, H. L.; Kheirandish-Gozal, L.; Gozal, D. Sleep, Sleep Disorders, and Immune Function, In Allergy and Sleep: Basic Principles and Clinical Practice. Eds.: Fishbein, A.; Sheldon, S. H., Springer International Publishing, Cham, 2019, pp. 3–15. [47] Teixeira, K. R. C.; dos Santos, C. P.; de Medeiros, L. A.; Mendes, J. A.; Cunha, T. M.; De Angelis, K.; Penha-Silva, N.; de Oliveira, E. P.; Crispim, C. A. Night workers have lower levels of antioxidant defenses and higher levels of oxidative stress damage when compared to day workers. Sci. Rep. 2019, 9, 4455. [48] Marie, V.; W, Y. L. Emotion, emotion regulation and sleep: An intimate relationship. AIMS Neurosci. 2018, 5, 1–17. [49] Mouffak, S.; Shubbar, Q.; Saleh, E.; El-Awady, R. Recent advances in management of COVID-19: A review. Biomed. Pharmacother. 2021, 143, 112107. [50] El-Missiry, M. A.; El-Missiry, Z. M. A.; Othman, A. I. Melatonin is a potential adjuvant to improve clinical outcomes in individuals with obesity and diabetes with coexistence of Covid-19. Eur. J. Pharmacol. 2020, 882, 173329. [51] Martorina, W. J.; Tavares, A. Possible role of exogenous melatonin in preventing more serious COVID-19 infection in patients with type 2 diabetes mellitus. Rev. Assoc. Med. Bras. 2021, 67, 18–21. [52] Sanders, J. M.; Monogue, M. L.; Jodlowski, T. Z.; Cutrell, J. B. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA-J. Am. Med. Assoc. 2020, 323, 1824–1836. [53] Ragab, D.; Salah Eldin, H.; Taeimah, M.; Khattab, R.; Salem, R. The COVID-19 cytokine storm; what we know so far. Front. Immunol. 2020, 11, 1446. [54] Samaee, H.; Mohsenzadegan, M.; Ala, S.; Maroufi, S. S.; Moradimajd, P. Tocilizumab for treatment patients with COVID-19: Recommended medication for novel disease. Int. Immunopharmacol. 2020, 89, 107018. [55] Siddiqi, H. K.; Mehra, M. R. COVID-19 illness in native and immunosuppressed states: A clinical–therapeutic staging proposal. J. Heart Lung Transpl. 2020, 39, 405–407. [56] Huang, C. C.; Chiou, C. H.; Liu, S. C.; Hu, S. L.; Su, C. M.; Tsai, C. H.; Tang, C. H. Melatonin attenuates TNF-α and IL-1β expression in synovial fibroblasts and diminishes cartilage degradation: Implications for the treatment of rheumatoid arthritis. J. Pineal Res. 2019, 66, e12560. [57] Camini, F. C.; da Silva Caetano, C. C.; Almeida, L. T.; de Brito Magalhães, C. L. Implications of oxidative stress on viral pathogenesis. Arch. Virol. 2017, 162, 907–917. [58] Schönrich, G.; Raftery, M. J.; Samstag, Y. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Adv. Biol. Regul. 2020, 77, 100741. [59] Reiter, R. J.; Mayo, J. C.; Tan, D. X.; Sainz, R. M.; Alatorre-Jimenez, M.; Qin, L. Melatonin as an antioxidant: under promises but over delivers. J. Pineal Res. 2016, 61, 253–278. [60] Hardeland, R. Melatonin and inflammation-story of a double-edged blade. J. Pineal Res. 2018, 65, e12525. [61] Codo, A. C.; Davanzo, G. G.; Monteiro, L. d. B.; de Souza, G .F.; Muraro, S. P.; Virgilio-da-Silva, J. V.; Prodonoff, J. S.; Carregari, V. C.; de Biagi Junior, C. A. O.; Crunfli, F.; Jimenez Restrepo, J. L.; Vendramini, P. H.; Reis-de-Oliveira, G.; Bispo dos Santos, K.; Toledo-Teixeira, D. A.; Parise, P. L.; Martini, M. C.; Marques, R. E.; Carmo, H. R.; Borin, A.; Coimbra, L. D.; Boldrini, V. O.; Brunetti, N. S.; Vieira, A. S.; Mansour, E.; Ulaf, R. G.; Bernardes, A. F.; Nunes, T. A.; Ribeiro, L. C.; Palma, A. C.; Agrela, M. V.; Moretti, M. L.; Sposito, A. C.; Pereira, F. B.; Velloso, L. A.; Vinolo, M. A. R.; Damasio, A.; Proença-Módena, J. L.; Carvalho, R. F.; Mori, M. A.; Martins-de-Souza, D.; Nakaya, H. I.; Farias, A. S.; Moraes-Vieira, P. M. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/Glycolysis-dependent axis. Cell Metab. 2020, 32, 437–446. [62] Sun, C. K.; Lee, F. Y.; Kao, Y. H.; Chiang, H. J.; Sung, P. H.; Tsai, T. H.; Lin, Y. C.; Leu, S.; Wu, Y. C.; Lu, H. I.; Chen, Y. L.; Chung, S. Y.; Su, H. L.; Yip, H. K. Systemic combined melatonin–mitochondria treatment improves acute respiratory distress syndrome in the rat. J. Pineal Res. 2015, 58, 137–150. [63] Xia, Y.; Chen, S.; Zeng, S.; Zhao, Y.; Zhu, C.; Deng, B.; Zhu, G.; Yin, Y.; Wang, W.; Hardeland, R.; Ren, W. Melatonin in macrophage biology: Current understanding and future perspectives. J. Pineal Res. 2019, 66, e12547. [64] Shi, C. S.; Nabar, N. R.; Huang, N. N.; Kehrl, J. H. SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discov. 2019, 5, 101. [65] Shi, J.; Gao, W.; Shao, F. Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends Biochem. Sci. 2017, 42, 245–254. [66] Man, S. M.; Karki, R.; Kanneganti, T. D. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol. Rev. 2017, 277, 61–75. [67] Tan, D. X.; Manchester, L. C.; Terron, M. P.; Flores, L. J.; Reiter, R. J. One molecule, many derivatives: A never-ending interaction of melatonin with reactive oxygen and nitrogen species? J. Pineal Res. 2007, 42, 28-42. [68] Galano, A.; Tan, D.-X.; Reiter, R. J. Melatonin: A Versatile Protector against Oxidative DNA Damage. Molecules 2018, 23, 530. [69] Hardeland, R. Melatonin and the electron transport chain. Cell. Mol. Life Sci. 2017, 74, 3883–3896. [70] Rodríguez-Rubio, M.; Figueira, J. C.; Acuña-Castroviejo, D.; Borobia, A. M.; Escames, G.; de la Oliva, P. A phase II, single-center, double-blind, randomized placebo-controlled trial to explore the efficacy and safety of intravenous melatonin in patients with COVID-19 admitted to the intensive care unit (MelCOVID study): a structured summary of a study protocol for a randomized controlled trial. Trials 2020, 21, 699. [71] Tan, D. X.; Hardeland, R. Potential utility of melatonin in deadly infectious diseases related to the overreaction of innate immune response and destructive inflammation: focus on COVID-19. Melatonin Res. 2020, 3, 120–143. [72] Wongchitrat, P.; Shukla, M.; Sharma, R.; Govitrapong, P.; Reiter, R. J. Role of melatonin on virus-induced neuropathogenesis-a concomitant therapeutic strategy to understand SARS-CoV-2 infection. Antioxidants 2021, 10, 47. [73] Suofu, Y.; Li, W.; Jean-Alphonse, F. G.; Jia, J.; Khattar, N. K.; Li, J.; Baranov, S. V.; Leronni, D.; Mihalik, A. C.; He, Y.; Cecon, E.; Wehbi, V. L.; Kim, J.; Heath, B. E.; Baranova, O. V.; Wang, X.; Gable, M. J.; Kretz, E. S.; Di Benedetto, G.; Lezon, T. R.; Ferrando, L. M.; Larkin, T. M.; Sullivan, M.; Yablonska, S.; Wang, J.; Minnigh, M. B.; Guillaumet, G.; Suzenet, F.; Richardson, R. M.; Poloyac, S. M.; Stolz, D. B.; Jockers, R.; Witt-Enderby, P. A.; Carlisle, D. L.; Vilardaga, J. P.; Friedlander, R. M. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, E7997–E8006. [74] Escames, G.; León, J.; Macías, M.; Khaldy, H.; Acuña-Castroviejo, D. Melatonin counteracts lipopoly- saccharide-induced expression and activity of mitochondrial nitric oxide synthase in rats. FASEB J. 2003, 17, 1–22. [75] López, L. C.; Escames, G.; Ortiz, F.; Ros, E.; Acuña- Castroviejo, D. Melatonin restores the mitochondrial production of ATP in septic mice. Neuro. Endocrinol. Lett. 2006, 27, 623–630. [76] Lowes, D. A.; Almawash, A. M.; Webster, N. R.; Reid, V. L.; Galley, H. F. Melatonin and structurally similar compounds have differing effects on inflammation and mitochondrial function in endothelial cells under conditions mimicking sepsis. Brit. J. Anaesth. 2011, 107, 193–201. [77] Reiter, R. J.; Sharma, R.; Ma, Q.; Dominquez-Rodriguez, A.; Marik, P. E.; Abreu-Gonzalez, P. Melatonin inhibits COVID-19-induced cytokine storm by reversing aerobic glycolysis in immune cells: a mechanistic analysis. Med. Drug Discov. 2020, 6, 100044. [78] MacLaren, G.; Fisher, D.; Brodie, D. Preparing for the most critically Ill patients with COVID-19: the potential role of extracorporeal membrane oxygenation. JAMA-J. Am. Med. Assoc. 2020, 323, 1245–1246. [79] Tong, Z. D.; Tang, A.; Li, K. F.; Li, P.; Wang, H. L.; Yi, J. P.; Zhang, Y. L.; Yan, J. B. Potential Presymptomatic Transmission of SARS-CoV-2, Zhejiang Province, China, 2020, Emerg. Infect. Dis. J. 2020, 26, 1052. [80] Guo, W.; Li, M.; Dong, Y.; Zhou, H.; Zhang, Z.; Tian, C.; Qin, R.; Wang, H.; Shen, Y.; Du, K.; Zhao, L.; Fan, H.; Luo, S.; Hu, D. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes/Metab. Res. 2020, 36, e3319. [81] Zhou, J.; Tan, J. Letter to the Editor: Diabetes patients with COVID-19 need better blood glucose management in Wuhan, China. Metabolism 2020, 107, 154216. [82] Tseng, Y. H.; Yang, R. C.; Lu, T. S. Two hits to the renin-angiotensin system may play a key role in severe COVID-19. Kaohsiung J. Med. Sci. 2020, 36, 389–392. [83] Campos, L. A.; Cipolla-Neto, J.; Amaral, F. G.; Michelini, L. C.; Bader, M.; Baltatu, O. C. 2013, The angiotensin-melatonin axis. Int. J. Hypertens. 2013, 521783. [84] Jafari-Vayghan, H.; Saleh-Ghadimi, S.; Maleki, V.; Moludi, J.; Alizadeh, M. The effects of melatonin on neurohormonal regulation in cardiac cachexia: A mechanistic review. J. Cell. Biochem. 2019, 120, 16340–16351. [85] Rahman, A.; Hasan, A. U.; Kobori, H. Melatonin in chronic kidney disease: a promising chronotherapy targeting the intrarenal renin–angiotensin system. Hypertens. Res. 2019, 42, 920–923 [86] Cardinali, D. P.; Hardeland, R. Inflammaging, metabolic syndrome and melatonin: a call for treatment studies. Neuroendocrinology 2016, 104, 382–397. [87] Chitimus, D. M.; Popescu, M. R.; Voiculescu, S. E.; Panaitescu, A. M.; Pavel, B.; Zagrean, L.; Zagrean, A. M. Melatonin’s impact on antioxidative and anti-inflammatory reprogramming in homeostasis and disease. Biomolecules 2020, 10, 1211 [88] Lin, L.; Lu, L.; Cao, W.; Li, T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection–a review of immune changes in patients with viral pneumonia. Emerg. Microbes Infec. 2020, 9, 727–732. [89] Parlakpinar, H.; Polat, S.; Acet, H. A. Pharmacological agents under investigation in the treatment of coronavirus disease 2019 and the importance of melatonin. Fund. Clin. Pharmacol. 2021, 35, 62–75. [90] Shin, N. R.; Ko, J. W.; Kim, J. C.; Park, G.; Kim, S. H.; Kim, M. S.; Kim, J. S.; Shin, I. S. Role of melatonin as an SIRT1 enhancer in chronic obstructive pulmonary disease induced by cigarette smoke. J. Cell. Mol. Med. 2020, 24, 1151–1156. [91] Wu, G. C.; Peng, C. K.; Liao, W. I.; Pao, H. P.; Huang, K. L.; Chu, S. J. Melatonin receptor agonist protects against acute lung injury induced by ventilator through up-regulation of IL-10 production. Resp. Res. 2020, 21, 65. [92] Huang, S. H.; Liao, C. L.; Chen, S. J.; Shi, L. G.; Lin, L.; Chen, Y. W.; Cheng, C. P.; Sytwu, H. K.; Shang, S. T.; Lin, G. J. Melatonin possesses an anti-influenza potential through its immune modulatory effect. J. Funct. Foods 2019, 58, 189–198. [93] Wu, X.; Ji, H.; Wang, Y.; Gu, C.; Gu, W.; Hu, L.; Zhu, L. Melatonin alleviates radiation-induced lung injury via regulation of miR-30e/NLRP3 axis. Oxid. Med. Cell. Longev. 2019, 4087298. [94] Zhao, X.; Sun, J.; Su, W.; Shan, H.; Zhang, B.; Wang, Y.; Shabanova, A.; Shan, H.; Liang, H. Melatonin Protects against Lung Fibrosis by Regulating the Hippo/YAP Pathway. Int. J. Mol. Sci. 2018, 1, 1118. [95] Hu, W.; Ma, Z.; Jiang, S.; Fan, C.; Deng, C.; Yan, X.; Di, S.; Lv, J.; Reiter, R. J.; Yang, Y. Melatonin: the dawning of a treatment for fibrosis? J. Pineal Res. 2016, 60, 121–131. [96] Yong, S. J. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infect. Dis. 2021, 53, 737–754. [97] Zhao, Y. M.; Shang, Y. M.; Song, W. B.; Li, Q. Q.; Xie, H.; Xu, Q. F.; Jia, J. L.; Li, L. M.; Mao, H. L.; Zhou, X. M.; Luo, H.; Gao, Y. F.; Xu, A. G. Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery. eClinicalMedicine 2020, 25, 100463. [98] Priyal, T.; Dean, C.; Hasan, T. ‘Long COVID’ syndrome. BMJ Case Rep. 2021, 14, e241485. [99] Wells, R.; Paterson, F.; Bacchi, S.; Page, A.; Baumert, M.; Lau, D. H. Brain fog in postural tachycardia syndrome: An objective cerebral blood flow and neurocognitive analysis. J. Arrhythm. 2020, 36, 549–552. [100] Méndez, R.; Balanzá-Martínez, V.; Luperdi, S. C.; Estrada, I.; Latorre, A.; González-Jiménez, P.; Feced, L.; Bouzas, L.; Yépez, K.; Ferrando, A.; Hervás, D.; Zaldívar, E.; Reyes, S.; Berk, M.; Menéndez, R. Short-term neuropsychiatric outcomes and quality of life in COVID-19 survivors. J. Int. Med. 2021, 290, 621–631. [101] Tütüncüler, F.; Eskiocak, S.; BaŞaran, Ü. N.; Ekuklu, G.; Ayvaz, S.; Vatansever, Ü. The protective role of melatonin in experimental hypoxic brain damage. Pediatr. Int. 2005, 47, 434–439. [102] Vriend, J.; Reiter, R. J. The Keap1-Nrf2-antioxidant response element pathway: A review of its regulation by melatonin and the proteasome. Mol. Cell. Endocrinol. 2015, 401, 213–220. [103] Shukla, M.; Chinchalongporn, V.; Govitrapong, P.; Reiter, R. J. The role of melatonin in targeting cell signaling pathways in neurodegeneration. Ann. N. Y. Acad. Sci. 2019, 1443, 75–96. [104] Reiter, R. J.; Sharma, R.; Rosales-Corral, S.; de Mange, J.; Phillips, W. T.; Tan, D. X.; Bitar, R. D. Melatonin in ventricular and subarachnoid cerebrospinal fluid: Its function in the neural glymphatic network and biological significance for neurocognitive health. Biochem. Bioph. Res. Co. 2022, 605, 70–81. [105] Romero, A.; Ramos, E.; López-Muñoz, F.; Gil-Martín, E.; Escames, G.; Reiter, R. J. Coronavirus disease 2019 (COVID-19) and its neuroinvasive capacity: is it time for melatonin? Cell. Mol. Neurobiol. 2022, 42, 489–500. [106] Taquet, M.; Geddes, J. R.; Husain, M.; Luciano, S.; Harrison, P. J. 6-month neurological and psychiatric outcomes in 236379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiat. 2021, 8, 416–427. [107] Estrada-Reyes, R.; Valdés-Tovar, M.; Arrieta-Baez, D.; Dorantes-Barrón, A. M.; Quero-Chávez, D.; Solís-Chagoyán, H.; Argueta, J.; Dubocovich, M. L.; Benítez-King, G. The timing of melatonin administration is crucial for its antidepressant-like effect in mice. Int. J. Mol. Sci. 2018, 19, 2278. [108] Valdés-Tovar, M.; Estrada-Reyes, R.; Solís-Chagoyán, H.; Argueta, J.; Dorantes-Barrón, A. M.; Quero-Chávez, D.; Cruz-Garduño, R.; Cercós, M. G.; Trueta, C.; Oikawa-Sala, J.; Dubocovich, M. L.; Benítez-King, G. Circadian modulation of neuroplasticity by melatonin: a target in the treatment of depression. Brit. J. Pharmacol. 2018, 175, 3200–3208. [109] Satyanarayanan, K. S.; Su, H.; Lin, Y. W.; Su, K. P. Circadian Rhythm and Melatonin in the Treatment of Depression. Curr. Pharmaceut. Design 2018, 24, 2549–2555. [110] Andersen, L. P. H.; Gögenur, I.; Rosenberg, J.; Reiter, R. J. The safety of melatonin in humans. Clin. Drug Invest. 2016, 36, 169–175. [111] Foster, B. C.; Cvijovic, K.; Boon, H. S.; Tam, T. W.; Liu, R.; Murty, M.; Vu, D.; Jaeger, W.; Tsuyuki, R. T.; Barnes, J.; Vohra, S. Melatonin interaction resulting in severe sedation. J. Pharm. Pharmaceut. Sci. 2015, 18, 124–131. [112] Tuft, C.; Matar, E.; Menczel Schrire, Z.; Grunstein, R. R.; Yee, B. J.; Hoyos, C. M. Current insights into the risks of using melatonin as a treatment for sleep disorders in older adults. Clin. Interv. Aging 2023, 18, 49–59. [113] Ma, S.; Chen, J.; Feng, J.; Zhang, R.; Fan, M.; Han, D.; Li, X.; Li, C.; Ren, J.; Wang, Y.; Cao, F. 2018, Melatonin ameliorates the progression of atherosclerosis via mitophagy activation and NLRP3 inflammasome inhibition. Oxid. Med. Cell. Longev. 2018, 9286458. |
[1] | Jingyao Zhu, Shuhong Wu, Yanwen Fang, Lin Lin, Jun Zhu. SARS-CoV-2 Inactivation by Persulfate-Enhanced Silver Ions [J]. Medicine Research, 2022, 6(1-2): 210013-210013. |
[2] | Hui Huang, Junwen Wang, Xueyan Li, Wenhui Wu, Kejin Shi, and Chaoyan Zhang. Renoprotective Effect of Sulphate Polysaccharide from Brown Algae on Ethylene Glycol-Induced Renal Damage in Rats [J]. Medicine Research, 2020, 4(1-2): 190010-190010. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备15041762号-3 Copyright © Medicine Research, All Rights Reserved. Address: 425 East 76th Street, Apt 9E, New York, NY, 10021, United States |