[1] Tham, Y-C.; Li, X.; Wong, T. Y.; Quigley, H. A.; Aung, T.; Cheng, C.-Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 2014, 121, 2081-2090. [2] Bourne, R. R. A.; Taylor, H. R.; Flaxman, S. R.; Keeffe, J.; Laidoo, K.; Pesudovs, K.; White, R. A.; Wong, T. Y.; Resnikoff, S.; Jonas, J. B. Number of People Blind or Visually Impaired by Glaucoma Worldwide and in World Regions 1990-2010: A Meta-Analysis. PLoS one 2016, 11, 1-16. [3] Weinreb, R. N.; Aung, T.; Medeiros, F. A. The pathophysiology and treatment of glaucoma: a review. JAMA 2014, 311, 1901-1911. [4] Bluwol, E. Glaucoma treatment. Rev. Prat. 2016, 66, 508-513. [5] Adams, J. M.; Cory, S. The Bcl-2 protein family: arbiters of cell survival. Science 1998, 281, 1322-1326. [6] Almasieh, M.; Wilson, A. M.; Morquette, B.; Vargas, J. L. C.; Polo, A. D. The molecular basis of retinal ganglion cell death in glaucoma. Prog. Retinal. Eye Res. 2012, 31, 152-181. [7] Ye, D.; Shi, Y.; Xu, Y.; Huang, J. PACAP Attenuates Optic Nerve Crush-Induced Retinal Ganglion Cell Apoptosis via Activation of the CREB-Bcl-2 Pathway. [J]. Mol. Neurosci. 2019, 68, 475-484. [8] Takahashi, A.; Masuda, A.; Sun, M.; Centonze, V. E.; Herman, B. Oxidative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH (pHm). Brain Res. Bull. 2004, 62, 497-504. [9] Levkovitch-Verbin, H.; Makarovsky, D.; Vander, S. Comparison between axonal and retinal ganglion cell gene expression in various optic nerve injuries including glaucoma. Mol. Vis. 2013, 19, 2526-2541. [10] Aimaiti, M.; Wumaier, A.; Asia, Y.; Zhang, Y.; Xirepu, X.; Aibaidula, Y.; Lei, X. Y.; Chen, Q.; Feng, X. Z.; Mi, N. Acteoside exerts neuroprotection effects in the model of Parkinson’s disease via inducing autophagy: Network pharmacology and experimental study. Eur. [J]. Pharmacol. 2021, 903, 174136. [11] Chen, Q.; Xi, X.; Zeng, Y.; He, Z.; Zhao, J.; Li, Y. Acteoside inhibits autophagic apoptosis of retinal ganglion cells to rescue glaucoma-induced optic atrophy. [J]. Cell. Biochem. 2019, 120, 13133-13140. [12] Holcombe, D. J.; Lengefeld, N.; Gole, G. A.; Barnett, N. L. The effects of acute intraocular pressure elevation on rat retinal glutamate transport. Acta Ophthalmol. 2008, 86, 408-414. [13] Maes, M. E.; Schlamp, C. L.; Nickells, R. W. BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells. Prog. Retinal. Eye Res. 2017, 57, 1-25. [14] Li, M.; Zhou, F.; Xu, T.; Song, H.; Lu, B. Acteoside protects against 6-OHDA-induced dopaminergic neuron damage via Nrf2-ARE signaling pathway. Food Chem. Toxicol. 2018, 119, 6-13. [15] Li, X.; Xie, Y.; Li, K.; Wu, A.; Xie, H.; Guo, Q.; Xue, P.; Maleshibek, Y.; Zhao, W.; Guo, J.; Chen, D. Antioxidation and Cytoprotection of Acteoside and Its Derivatives: Comparison and Mechanistic Chemistry. Molecules 2018, 23, 498. [16] Ju, W-K.; Shim, M. S.; Kim, K-Y.; Bu, J. H.; Park, T. L.; Ahn, S.; Weinreb, R. N. Ubiquinol promotes retinal ganglion cell survival and blocks the apoptotic pathway in ischemic retinal degeneration. Biochem. Biophys. Res. Commun. 2018, 503, 2639-2645. |